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Abstract

Recent work has shown potential for reducing total computational time when
training a convolutional deep neural network for image segmentation, by pro-
cessing each training image in a single pass rather than patch by patch, as
demonstrated by Masci et al. [38].

This thesis will analyze and review the existing set of computing resources for
and literature on deep learning to come up with the best possible solution for
implementing deep convolutional neural networks for image segmentation on
CPUs and GPUs. It will review the theory behind convolutional deep learning
architecture, with special emphasis on its potential for speed. This thesis will
also cover implementation of said convolutional deep learning for image segmen-
tation on CPUs and GPUs, at such a quality that it can be distributed through
github.

The proposed implementation will be accomplished using the frameworks CUD-
Array and Deeppy, which together encompass a Python library, which has been
developed in collaboration with Anders Boesen Lindbo Larsen, during this the-
sis period. The proposed implementation will be tested with respect to speed
and predictive performance on the ISBI 2012 Electron Microscopy Segmenta-
tion Challenge [8]. Final testing demonstrated relatively short processing time
without significant loss of performance on said challenge.
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Chapter 1

Introduction

As machine vision approaches, and eventually exceeds, the accuracy and speed
of human performance, we may begin to see more clearly the benefits that
artificial intelligence can offer us in our day-to-day lives. Particularly with
regards to medical imaging, machine vision can assist with tasks ranging from
mitosis detection in breast cancer histopathology images [13] to neural structure
segmentation in electron microscopy images[10], pictured below in Fig. 1.1.

The applications of machine vision are wide ranging, including handwritten
digit and character identification, image classification, object detection and even
galaxy photo classification. At a time when we are collecting more data to sort
through, than we have man hours to sort through it, machine vision is one way
in which we can use artificial intelligence in a wide variety of situations to act
as a decision making aid and to save time in our day to day lives.

Machine Vision and Image Segmentation

From birth we begin to train our visual system to understand the world around
us, recognizing our parents faces from differing angles, identifying and classify-
ing every new ’image’ which is introduced to us. Influenced originally by the
structure of a cat’s visual cortex [26], and later a monkey’s [27], deep hierarchical
neural models were developed in the late 70’s in Tokyo[21].
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The first model, named the Neocognitron, was a self organizing neural net-
work(NN) model which acquired the ability to recognize stimulus patterns based
on the Gestalt principles of geometrical similarity, without being affected by the
shape’s position nor by small shape distortions. NN’s, also known as multi-layer
perceptons, got a break through in 1989, when LeCun incorporated backpropa-
gation [35].

Over the years NN’s became deeper and wider and were therefore called Deep
Neural Networks(DNNs). While neural networks fell out of popularity slightly
in the 90’s, today within the machine learning community, DNN are again a hot
topic. This is largely due to the fact that in recent years DNNs, and variations of
DNNs such as Deep Convolutional Neural networks (CNNs), have become more
feasible by utilizing graphic cards (GPU), and have been shown to outperform
other methods in a wide array of applications and on varying data sets. These
range from classifying handwritten characters in the Mnist data set [22], to
localising, detecting and classifying different objects in the ImageNet challenge
[33].

One task within machine vision is image classification and segmentation. Im-
age segmentation often requires classification for each pixel in an image, for
instance, in a case where one wants to identify cell walls in a image in the
ISBI 2012 Electron Microscopy Segmentation challenge. These are often built
with supervised machine learning techniques, like CNNs or MaxPooling CNNs
(MPCNNs). Throughout this thesis, the focus will be on the use of CNNs for
image segmentation and classification.

Figure 1.1: ISBI 2012 Electron Microscopy Segmentation Challenge samples
[10]

1.1 Thesis Outline

This thesis has two major emphases, the first of which is a review of the theory
and architecture of CNNs, including a hypothesis for a fast MPCNN using
Fragmented MaxPooling for Image Segmentation tasks, an approach originally
introduced by Masci et al.[38]. The second is the Implementation and Testing of
such a network within a newly developed DNN python library, CUDArray and
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Deepy, applied to the ISBI 2012 Electron Microscopy Segmentation Challenge
[4].

Following the introduction, which includes a concise review of the existing set of
computing resources for and literature on deep learning, this thesis briefly dis-
cusses in Chapter 2 the traditional and state-of-the-art architectures of CNNs
used for pixel level classification tasks, including the latest Fragmented Max-
Pooling approach.

Next, in Chapter 3, ’Convolutional Deep Learning Architecture,’ you will find
an overview of Network Layers and of the Training of a CNN using backpropaga-
tion. The ’Network Layers’ and ’Training’ sections include, among other topics,
discussion of the most popular methods as well as the newest, potentially not
yet widely adopted methods, within the Convolution layers, Max Pooling Layers
and Fully Connected and Dropout layers.

Chapter 4, ’Implementation’, will cover just that. The CUDArray and Deeppy
libraries will be described and the MPFCNN module implementation for GPUs
in Deeppy will be discussed in greater detail. Chapter 5 ’Testing and Results’
uses CUDArray and Deeppy frameworks on the ISBI 2012 Electron Microscopy
Segmentation Challenge, reviewing speed and predictive performance. Based on
final testing, this thesis will finish with a Conclusion in Chapter 6 showcasing
a relatively short processing time without significant loss of performance, con-
sidering the lack of post-processing, on said challenge using a MPFCNN with a
GPU implementation.

1.2 What is a Convolutional Neural Network?

A Back Propagated DCNN, first proposed by LeCunn in 1989 [35] is a hier-
archical neural network, comprised mainly of three intermediate ’hidden’ layer
types; convolution, pooling/subsampling, and fully connected. The network
starts with an input layer, is followed by the various intermediate ’hidden’ lay-
ers, and finishes with an output layer. Having more hidden layers, rather than
fewer, has been shown to improve the precision of the network [14]. The output
layer offers a classified, transformed version of the input data. A basic CNN can
be seen in Fig. 1.2.

The ’hidden’ layers consist first of alternating convolution and pooling/subsam-
pling layers, which reflect the simple and complex cells in the mammalian visual
cortex. The convolution layer extracts localized features from the input im-
age, utilizing filters, or kernels. The results are subsampled by a pooling layer,
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Figure 1.2: Graphical depiction of a LeNet model, from deeplearning.net

and these subsequent results are then passed to another convolution layer to be
re-filtered.

This process continues, passing results deeper into the network, to multiple
pooling and convolution layers, the total number of which is set by the network
architect, resulting in a deep feed-forward convolutional network architecture.
While many layer decisions are made by the network architect, feature extraction
within the network is learned from data and not enforced by designers.

The feature vector results from the final pooling layer are passed to a flattening
layer and then through a series of fully connected layers, finally ending with a
Multinomial Logistic Regression(MLR) Output layer. It should be stated that
the order, type and number of layers in a network architecture are defined by
the network architect.

There are a wide variety of layer types that have not been mentioned in this
thesis, but that may prove useful when applied to novel cases. This thesis will
mention use of the following layer types: input, Convolution, MaxPooling, Max-
PoolingFragment [38], Flattening, Indexing and Flattening, Fully Connected,
Dropout [47], and Multinomial Logistic Regression.

Pierre Sermanet et al.[45] stated that ’the main advantage of ConvNets for
many (recognition, localization and detection) tasks is that the entire system is
trained end to end, from raw pixels to ultimate categories, thereby alleviating
the requirement to manually design a suitable feature extractor. The main
disadvantage is their ravenous appetite for labeled training samples.’

In reference to the above mentioned disadvantage, image transformation, in-
variance and rotation can be used to generate more training samples from a
originally small set of training data. Fortunately, this is not a major disadvan-
tage when performing image segmentation, which is a pixel level classification
task. In this case, each pixel is a sample. For example, an image of size 200x200
provides 40,000 pixel samples, often meeting the CNN’s need for large training
sets.

deeplearning.net
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1.3 Convolutional Neural Networks Over the Years

Between 1989 and 2009 progress with CNN was slow, but notable. Limitations
were mainly due to hardware. We saw the introduction of MaxPooling layers in
1992 [55] and in 1998, LeCun improved his DNN using the MNIST handwritten
digit dataset [36]. In 2003, neural networks were successfully applied to image
interpretation [7] and digit recognition using only supervised pre-training [46].

Deep structure based approaches set records in natural language processing
in 2008 [17], natural images (CIFAR 10) in 2009 [32], and Chinese characters
(CASIA) in 2010 [37]. In 2009 a 3-dimensional CNN was combined with SVMs
to detect human actions in surveillance videos, winning three 2009 TRECVID
competitions [56].

In 2010, GPU usage began changing the game. We saw a NN using plain back-
propagation with distortions break the MNIST error record simply by utilizing
the GPU [15], establishing new state of the art results. Shortly after, in 2011,
we saw the same team achieve super human vision performance results with
the first implementation of GPU-based MPCNN on the Nvidia CUDA parallel
computing platform [19] making the network both wide and deep [14].

Since 2011, records utilizing DNNs and DCNNs have been set and broken year
after year. Researchers achieved high scores in 2011 in handwritten characters
[16], and in natural language processing [18], as well as in speech recognition at
Microsoft in 2013 [20].

More relevant to this thesis, have been the projects which utilize deep structures
for solving real world applications using machine vision. Examples include clas-
sifying traffic signs in 2011 [48] using a MPCNN [11], image classification in
2012 [12] and 2014 [5] [42], improved accuracy on a subset of ImageNet in 2012
[33], object detection in 2013 [45], and facial recognition and verification in 2014
[50] [49].

A CNN won it’s first image segmentation challenge in 2012 [10] and leading up
to 2015 the best performing algorithms for many vision tasks, like human pose
estimation [28] [52] [54] and steel defect detection [38] [39], have been based on
deep convolutional neural networks [5] [9] [45] [30] [13]. Some of the methods
which have been shown to improve DNNs and CNNs, have been drop-out [47],
max-pooling [44], rectified linear units [33] and Local Contrast Normalization
[29]. Most of these ideas were not new, rather they were newly applied to NNs
from other fields.
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Neural Networks and Libraries

Because DNNs continue to be an active research field, researchers need access to
good tools and frameworks to effectively and efficiently test new methods. One
such tool is a NN library that incorporates the latest state of the art methods,
and which can be easily modified for testing even newer ideas. Fortunately,
there are many high-performing, open source libraries that incorporate many of
the state of the art methods available to academics.

Looking at the library landscape today, we can find a handful of very good
libraries, like Theano[6] or Caffe[30], but they tend to focus heavily on either
speed, like Torch[3] and ConvNet2[1], or usability like pybrain[43]. There are
very few which strike a balance. Furthermore, many of the more mature libraries
are not written in Python, which could soon be the most used language by aca-
demics, and is already the most used language by universities when introducing
computer science students to programming.[23]

Theano is the exception, but it includes a complex optimization function, which
re-compiles your code, making it quite difficult and time consuming to debug
while developing a new library modification. As mentioned, this thesis includes
contributions to a new open source library, CUDArray [34] and Deeppy[2], and
will be covered in more detail in Chapter 4 ’Implementation’.



Chapter 2

Hypothesis: Faster MPCNN
with Fragmented

MaxPooling for Image
Segmentation

As described in Chapter 1, a traditional DCNN for pixel level classification often
uses a patch based input layer to preprocess an image, before forward propagat-
ing the data through each layer of the network. Individual pixel classification
requires the network to evaluate each pixel in question, while also using the
data from the surrounding pixels. The patch approach extracts a small square
’patch’ of pixels from the image, with the pixel to be evaluated located in the
center of said patch.

The output of the input layer for a 512× 512 pixel image is 512× 512 patches,
which are then fed to the network one at a time. Because a patch is extracted
for every pixel, one pixel’s patch will overlap the patch of it’s neighboring pixel,
both containing data from many of the same pixels, as shown in Fig. 2.1.
Fortunately, the latest research by Masci et al.[38] provides solutions for these
redundancies by utilizing ’fragments’ instead of patches as a part of the new
MaxPoolingFragment CNN (MPFCNN).
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1 -1 2

3 33
3 0 0

image

kernel

patch 1

patch 2

Figure 2.1: Example of duplicated convolution calculations for two patches

The most computationally expensive layer of the network is by far the convolu-
tion layer. The time complexity for segmenting an image can be found for the
two networks in order to get an idea of the potential speedup. For the sake of
simplicity, we assume that all calculations are done consecutively.

For the patch method, the following notation can be used to describe the time
complexity for each convolution layer, assuming a square image, patch and ker-
nel.

O(s2 × |P(l−1)| × |P(l)| × w2
l × k2l ) (2.1)

where s is the image size in the original image, |P(l)| is the number of feature
maps for l, w is the size of the feature map and k is the size of the kernel.

For the fragment method, the complexity can be calculated as follows:

O(fs2 × |P(l−1)| × |P(l)| × |Fl| × k2l ) (2.2)

where fs is the fragment size, |P(l)| is the number of feature maps for l, |Fl| is
the number of fragments in layer l and k is the size of the kernel.

Using these complexities, we can calculate a potential speedup for segmenting
an image. Using the network from Table. 5.1 an image size of 512 and a
patch size of 31, it can be seen that the patch method requires 68.4 times more
computations as seen in Table 2.1.
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l s fs |Pl−1| |Pl| wl |Fl| k P · 109 F · 109 speedup
1 512 512 1 48 28 1 4 157.8 0.2 784.0
3 512 256 48 48 10 4 5 1509.9 15.1 100.0
5 512 128 48 48 2 16 4 38.7 9.7 4.0
Total 1706.4 25.0 68.4

Table 2.1: Estimated time complexity P for the patch method and F for
the fragment method and the relative speedup using the fragment
method. Using the network described in Table. 5.1 an image size
of 512 and a patch size of 31.

Today, using a MPFCNN, the entire image can be fed to the network in a single
pass, without passing individual overlapping patches, or any patches at all,
eliminating the redundant calculations, and greatly decreasing network training
time. For the full image, all convolutions only have to be calculated once per
convolution layer. An example of a MPFCNN can be seen in Fig.2.2 Each layer
builds on the ideas proposed by Masci et al.[38].

convolution layer �attening 
layer

fully 
connected

layer

input layer

pooling layer convolution layer pooling layer

Figure 2.2: Example of a MaxPoolingFragmented Convolutional Neural Net-
work (MPFCNN)

The MPFCNN method, introduced in 2013, has already been used to locate
joints of a person in an image [53], and to reduce the loss of resolution in one
instance of the ImageNet competition [45]. The team that created the MaxPool-
ingFragment method has already applied said method to steel defect detection
[22], to neural structure segmentation in electron microscopy images[38] and to
mitosis detection in breast cancer histopathology images [13], achieving state of
the art performance.

Unfortunately for many academics, the new method has not, as far as I can
confirm at the time of this thesis, been incorporated into any pythonic neural
network libraries.
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Hypothesis

Hypothesis: According to existing DL theory and CNN architecture, the best
possible solution for implementing deep convolutional neural networks for fast
image segmentation on CPUs and GPUs without significant loss of accuracy
employs the use of Masci’s Fragmented approach on a GPU-implemented Max-
Pooling Convolutional Neural Network, including Supervised training through
backpropagation using Stochastic Gradient Decent.

In order to confirm this hypothesis, said network will be implemented as a
fully parameterizable CNN within a DNN Python library for use on CPUs and
GPUs, at such a quality that it can be distributed through github. The proposed
implementation will be tested with respect to speed and predictive performance
using the ISBI 2012 Electron Microscopy Segmentation Challenge data.



Chapter 3

Convolutional Deep
Learning Architecture

In this chapter we will describe in more depth many of the layers needed to
construct and train a CNN, specifically a MPFCNN, highlighting the differ-
ences between a traditional MPCNN using patches, and the newer ’Fragmented
Approach’to MPFCNN, without the use of patches.

We start with ’Network Layers’ and finish with ’Training’. You can expect to
find theoretical mathematical formulas throughout this chapter, and notation
will be defined as needed. Note that post-processing will not be discussed in
this thesis, as it does not relate as directly to the use of a CNN for Image
segmentation, as to the process of finding the specific solution to a specific
problem.
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3.1 Network Layers

3.1.1 A Word on Forward Propagation

Forward propagation of a network is the process of input data moving in one
direction through a network. This is in contrast to backpropagation, which
occurs when an error is processed through the network in the exact opposite
direction, subsequently training and updating each layer.

Forward propagation is used in the training pass with known test data, as well
as after the network is trained, for classifying new unknown test data. In this
section, ’Network Layers’, we will discuss forward propagation and the general
behavior of each layer. backpropagation will be discussed in section 3.2, titled
’Training’.

3.1.2 Input Layer

The input layer is not truly considered a part of the network and does not ’learn’,
or rather it is not trained, it merely generates an abstraction of the input data
so that the network can work with it. The input layer, a visible layer, and not
a part of the hidden layers, supplies the input data to be given to the hidden
layers of the network, and has no wieght associated with it.

This PreProcessing could consist of normalizing the data, or converting it to
the right format. In the traditional patch method, already discussed in Chapter
2, the input layer would extract patches from the input image, such that the
image could be fed to the network as a series of patches.

As previously mentioned, patches are not necessary in the Fragmented Ap-
proach, as the entire image is propagated through the MPFCNN in a single
pass. When we are dealing with the new fragmented approach, the input for
the Convolution layer changes from a single set of feature maps x, to a single
set of Fragments Fx = {

⋃N
i=1 fi}. Here each fragment fi contains a set of fea-

ture maps. The input to the network will thus have a Fy with cardinality of 1,
containing one fragment f0 corresponding to the input images feature maps.
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3.1.3 Convolution Layer

Traditionally, a CNN contains multiple convolution layers, alternated between
multiple Pooling layers. A convolution layer consists of a set of kernels (or filters)
which are used to convolve the input image x, extracting a variety of features
from the input image, generating one feature map for each kernel. After the
feature maps have been created, an activation function is used to introduce non-
linearity to the pre-activated feature maps y, giving an output a. When creating
a convolution layer, one can modify the number and size of kernels, the size of
the stride, the size of the window and the presence or absence of padding.

Discrete Convolution

The discrete convolution of an input image x with a kernel k of size r × s will
yield an pre-activation output y. Each position in the output y is defined as

yij = (x ∗ k)ij =
∑
pq

xi+p,j+qkr−p,s−q (3.1)

Where p runs from 0 . . . r and q from 0 . . . s. ∗ denotes the convolution operation.

To conceptualize this we can look at Fig. 3.1. From the formula, we can see
that the kernel is read from the lower right corner. This is the same as taking
the kernel, flipping the rows and columns k̃ and placing it on top of x.

* =

1 2 733

5
1 4

9 1
29
4

6
8
9

6

2

61
810

9 8

252
214
212 85

10

Figure 3.1: convolution on one input image with one kernel, using stride (1,1)

To calculate y, the flipped kernel k̃ is placed on top of x in every possible
position. The dot product of k̃ and the underlying matrix is calculated and
becomes the new value in y. An example of the output from the first row and
first column (0,0) in 3.1 can be seen below.
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y0,0 = (x ∗ k)0,0

= x0,0k2,2 + x0,1k2,1 + x0,2k2,0 + x1,0k1,2 + x1,1k1,1

+ x1,2k1,0 + x2,0k0,2 + x2,1k0,1 + x2,2k0,0

= 1× 2 + 2× 5 + 3× 2 + 4× 2 + 5× 1 + 2× 4 + 10× 2 + 8× 1 + 9× 2

= 85

One important thing to note is that the kernel k and the weight W of the layer
are not the same. The relation between the kernel and the weights are defined as
k = W̃ . Meaning, the kernel equals the weight matrix, where rows and columns
have been flipped.

Convolution Layer Padding

Adding padding to an image, including the edge cases, can in some situations
improve the error rate of the network, as shown in [31]. A padding of size krs/2
can be applied to the input image x. This allows the convolved image to have
the same dimensions as the input image. Normal or typical padding is either
mirror padding, where the image’s pixel values are mirrored, or zero padding,
as shown in Fig. 3.2.

* =

0 0 000
0
00

0
0
0
0
0

0 0 0 0 0 0
0
0
0
0
0

Figure 3.2: convolution of one input image, using zero padding, with one ker-
nel, stride (1,1)

Convolution Layer Stride

Another flexible aspect of the Convolution Layer is the stride of the kernel.
Modifying stride makes it possible to convolute only every n pixel. An example
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of this can be seen in Fig. 3.3. Here a 5 × 5 image is convolved using a 3 × 3
kernel using a stride of 2, both vertical and horizontal, resulting in a 2×2 output
image.

* =

Figure 3.3: convolution of one input image with one kernel,with a stride of
(2,2)

Convolution Layer Feature Maps

A grey-scale input image will initially consists of one feature map, where as a
color input image will initially consist of three feature maps, one each corre-
sponding to red, green and blue.

The feature maps which are generated by the Convolution Layer identify novel
image features, potentially edges, curves or lines, as well as features which are
less recognizable to the human eye. The total number of feature maps a layer
produces are defined for each layer by the total number of kernels for that given
layer.

When there is more than one feature map in layer l − 1, the kernels in layer l
will be 3 dimensional. For each feature map in the input x from layer l − 1,
and each feature map in layer l, there will be a weight matrix Wij . In Fig. 3.4
this is illustrated graphically. When calculating the pre-activation output yj in
layer l, the output will be the sum of convolutions of the feature maps in x.

Convolution Layer Activation Function

As mentioned, the convolution layer contains and ends with an activation func-
tion. Traditionally, a tanh or sigmoid function was used. However, recent work



16 Convolutional Deep Learning Architecture

Figure 3.4: convolutions of 4 feature maps using 2 kernels. Image from
deeplearning.net/tutorial/lenet.html

has shown that rectified linear unit (ReLU functions require less processing
power and train the network faster [33].

A plot of the 3 graphs can be seen in Fig. 3.5. The activation function g(x) is
applied to each value in the pre-activation output y to introduce non-linearity.
The output of convolution layer l is thus al = g(yl).

−4 −2 0 2 4

−1

−0.5

0

0.5

1

x

g
(x

)

ReLu
tanh
logistic

Figure 3.5: Plot of 3 commonly used activation function

Convolution Layer Fragmented Approach

In the Convolution Layer, the total number of fragments coming into the Con-
volution Layer is the same as the total number of fragments going out. The
Convolution layer does not alter the total number of fragments, ensuring that
that |Fx| = |Fy|. The sets of feature maps fi in Fx are not necessarily the same
size as the sets in Fy this solely depends on the number of kernels in the layer.

deeplearning.net/tutorial/lenet.html
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The images in one fragment are not affected by images in other fragments.
Each fragment fi in Fx can thus be convoluted in the same manner as the
standard method described above. The pseudo code below shows an approach to
calculating Fy where the method convolv is the convolution method described
above.

def fragment_convolv(F_x , W):
F_y = [ ]
for f_i in F_x:

y_j = convolv(x = f_i , W = W,
stride = 1, padding = true)

f_j = activate(y_j)
F_y.append(f_j)

return F_y

When segmenting the image by classifying each pixel, the information of each
pixel has to be retained. During convolution, the stride must therefore be set
to one pixel in each direction. Furthermore, the image must be padded in order
to retain the pixels from the edge cases of the input image.

3.1.4 Max-Pooling or MaxPoolingFragment Layer

The pooling, or sub-sampling, layer introduces translation invariance to the
network, which improves generalization [25]. It does this by ’pooling’ together,
or sub-sampling, a set amount of pixels into one value. The number of pixels
sub-sampled is defined by the pooling window size. The window is moved over
the image in strides, where we distinguish between strideh and stridev according
to which direction the window is being moved. Often the stride will equal the
window size, resulting in a reduced image size.

Max-Pooling and Mean-Pooling

There are a variety of pooling techniques, but the two most common techniques
are mean-pooling and max-pooling. In relation to mean-pooling, the pooled
value is the mean of all values within the pooling window. In relation to max-
pooling, the pooled value is the maximal value of all the values in the pooling
window. Max-pooling has been shown to have a positive effect on network
performance [44].

In Fig 3.6, examples of max-pooling and mean-pooling can be seen. The input
given is 2 feature maps of size 4x4, using either max- or mean-pooling, with a
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window size of 2x2 and a stride of 2 in both directions. The pooling is performed
on each feature map giving an output of 2 feature maps of size 2x2.
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Figure 3.6: From top, Max and Mean pooling using a 2x2 window and stride
(2,2)

The output of mean- and max-pooling can be described as:

max− pool : yijk = max
pq

xi,(j×sv)+p,(k×sh)+q (3.2)

mean− pool : yijk =
1

p× q
∑
pq

xi,(j×sv)+p,(k×sh)+q (3.3)

Where i is the feature map, jk is the index of the output yi, p and q are the
pooling window size. sv and sh are vertical stride and horizontal stride.

Stride and Overlap during Pooling

By using a variable stride, it becomes possible to to overlap the pooling windows
when the window size is larger than the stride. Using overlapping pooling win-
dows has been shown to give the best results[25][33]. In other instances, setting
the stride equal to the window size and without overlap, has been shown to give
the best results[44]. In practice, a variety of strides should be tested on any one
individual problem to find the best result.

The topic of stride in the MaxPoolingFragmentated layer is discussed further in
Chapter 4 ’Implementation’, due to the fact that Masci’s fragmentated approach
has been modified and generalized in the CUDArray library implementation to
allow the user to modify the stride.
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MaxPoolingFragment Layer

The MaxPoolingFragment layer is where the fragments in a MPFCNN are first
created. When sub-sampling an image, a MaxPooling window is moved over
the image in strides, as previously described. Pooling is often used with a stride
larger than one in both directions in order to reduce image size. When working
with fragments this creates an information retention problem, of which Giusti
et al.[22] gives an example:

“..when we perform a 2 × 2 max-pooling operation on an extended
map, we obtain a smaller extended map which does not contain in-
formation from all the patches contained in the input image; instead,
only patches whose upper left corner lies at even coordinates of the
original image are represented. Any subsequent max-pooling layer
would further aggravate the problem.”

This problem is dealt with by using the MPF layer, which ensures that all
information from the patches within the input fragments Fx are still contained
within the output fragment Fy.

As described in [38], MaxPooling with a window size of p, q will be performed
on the input image with p× q different offsets. Each offset produces an output
fragment, thus the total number of output fragments will be |Fx|pq.

An example for one input fragment can be seen in Fig. 3.7, where a 2 × 2
pooling window yields 22 fragments and offsets. The set of offsets are thus
[(0, 0), (0, 1), (1, 0), (1, 1)]..

In Masci et al. [38], the fragments are kept the same size, as opposed to Giusti
et. al. [22], where the size of the fragment depends on the offset. In this thesis
we will be using the approach of Masci et al., which ensures that every pixel is
retained and results in simpler lines of code.

To keep the same dimension of each fragment, padding is added to the right side
and bottom of the matrix. The padding can be seen in Fig. 3.7 where a −inf
padding has been added to ensure that the padding is not forward propagated.

With the Fragmented approach, MaxPooling is applied to every feature map
within every fragment in Fx, thus |Fy| = |Fx| × p × q. The number of feature
maps in each fragment in Fy is the same as the number of feature maps in each
fragment in Fx.
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Figure 3.7: Max-pooling of a 4x4 image with a 2x2 window using fragmenta-
tion

3.1.5 Flattening Layer

After a series of alternating Convolution and MaxPooling layers, the final Pool-
ing layer passes an output to the Flattening layer. The Flattening layer reduces
that output to a 1D array in order to allow the upcoming Fully Connected layer
to process the data.

Traditionally, the output of the convolution layers consists of k feature maps,
each of size i× j. The flattening layer flattens the 3 dimensions into an output
array y as seen in Fig. 3.8. The output array y is of length k × i× j. y is then
forward propagated to the Fully Connected layer.

Flattening Layer Fragmented Approach using Indexing

The Indexing and Flattening layer from the Fragmented approach, reduces the
set of fragments Fx to a 2D array using an Index, which allows the upcoming
Fully Connected layer to process the data in the same was as it would the output
from a traditional Flattening layer. From the incoming set of fragments Fx each
patch is extracted to a 2D set of arrays Y . Y will contain one array for each
pixel in the image, where each array will contain the pixel information for each
feature map.
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Figure 3.8: Flattening of a 2× 2 image with 3 feature maps into an array

In Fig. 3.9 an example of flattening 4 fragments with 3 feature maps can be seen.
In the figure, each patch that is flattened has a height and width of one pixel. In
some cases it might be preferred to have a different size patch during flattening.
Implementation of the Indexing and Flattening layer will be discussed in section
4.2.2.

Figure 3.9: Flattening of a 2× 2 image with 3 feature maps and 4 fragments
into a batch of arrays

In order to put the picture back together, the index of pixels in Fx must be
able to be mapped back to the original picture. Using the information from the
Pooling layers, the index of each pixel in each fragment can be mapped back to
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its original position in the image. This is done by tracking the index through
the pooling layers and again, will be discussed in the implementation section
4.2.2.

3.1.6 Fully Connected and Dropout Layer

The Fully Connected layers behave in the same manner for the Fragmented
approach as for the traditional Patch based approach. The Fully Connected
layer consists of j nodes, where each node is connected to all i nodes in the
previous layer giving j × i connections.

In Fig. 3.10 a standard Fully Connected layer can be seen. The input vector
x is supplied from layer l − 1 that could be the flattening layer or another
Fully Connected layer. The Fully Connected layer consists of a wight matrix W
containing a weight wij for each connection between xi and yj . yj is called the
pre-activation and is thus a linear combination of the input x. Non liniarity is
applyed to yj using an activation function g(x) giving the output value aj . The
activation function is the same as described in section 3.1.3, and often takes the
form of one of the functions in Fig. 3.5. The bias b has been omitted from the
figure for simplicity but contributes to y.
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Figure 3.10: Fully connected layer with the bias omitted, x as the input, y as
the pre-activation and a as the output.

The pre-activation yl and output al for a Fully Connected layer can be written
in vector form as:

y(l) = W (l)x+ b(l) (3.4)

a(l) = g(y(l)) (3.5)
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Here, x is the output of the previous layer. Therefore, x = a(l−1) when layer
l − 1 is a fully connected layer.

The final Fully Connected layers will contain the same number of notes as the
output of the network should contain. If the problem is a classification problem,
this will equal the number of classes.

Dropout in a Fully Connected Layer

When dealing with a deep network which has a large number of parameters,
over-fitting can be a problem. Dropout is a method which can reduce over-
fitting by preventing co-adaptations of the training data. During each training
pass, Dropout is achieved by assigning an omission probability of 1− p to every
node in the hidden layer.

By dropping the nodes during every training pass, we can view this as training
a number of entirely different networks at once. During prediction, all the
nodes are used, and this can be viewed as ensembling, which has been shown to
generate positive results [33].

Using dropout, the fully connected hidden layer operation described in the pre-
vious section, is shown below.

r
(l)
j ∼ Bernoulli(p) (3.6)

x̃ = r(l) � x (3.7)

y(l) = W (l)x̃+ b(l) (3.8)

a(l) = g(y(l)) (3.9)

Where � is element wise multiplication, Bernoulli(p) produces a vector with |x|
independent probabilities, and x = a(l−1) when layer l − 1 is a fully connected
layer.

During prediction, the operation is as shown below, generating an ensemble of
different networks, which were created during training.

x̃ = x× (1− p) (3.10)

y(l) = W (l)x̃+ b(l) (3.11)

a(l) = g(y(l)) (3.12)
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3.1.7 Multinomial Logistic Regression Output Layer

A Multinomial Logistic Regression layer is often used as the output layer for
multi-class classification. The desired output of a network for a multi-class
problem is the conditional probability p(y = c |x).

To ensure that the output is a probability distribution over the classes, the
softmax function is used. Given the input x from the last hidden layer in the
network, the output of the network y = g(x), where g(x) is given by the softmax
activation function, as shown below.

g(x) =

[
exp(x0)∑
c exp(xc)

, . . . ,
exp(xc′)∑
c exp(xc)

]>
(3.13)

Where the exp of each value in the input vector x = [x0 . . . xc′ ] is divide by the
sum of the exp of all c values in x. Guaranteeing that the g(x) will sum to one
an d be strictly positive.

In this case it is required that the the last hidden layer in the network has the
same amount of nodes as number of classes c. The output y is thus the networks
prediction of the probability that the given input belongs to each class. y can
then be used to train a network or can be used as an already trained network y
in order to classify unknown data.

3.2 Training

When training a network, the goal is to find the best fit for weights throughout
the hidden layers, such that the network produces the best results for a given
problem. To train the network, we use training data in which the truth of the
data is know. One example could be the MINST dataset, where the input data
x is handwritten numbers as seen in Fig. 3.11. The ground truth y for x would
be 6 and 8.

Figure 3.11: Handwritten characters from the MINST data set

Training the network involves running an epoch, or a training pass, containing
known data. In an epoch, the data is forward propagated through the network
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as described throughout section 3.1. For training, the error from the output
layer is found, and then back propagated through the network to update the
weights within each of the hidden layers. The training data can be propagated
either one-to-one, or in batches.

3.2.1 A Word on backpropagation

The practical goal of backpropagation is to update the weights within each
hidden layer in order to minimize the classification error, eventually reaching
the best possible classification results.

Instead of optimizing directly on the classification error, which is either true or
false and which predicts either the correct or incorrect class, we define a cost
function C which allows for a smoother error function. The cost function is
defined as C(f(xt; θ), y), where θ is all the parameters of the network.

To optimize the weights and biases in the network, stochastic gradient decent is
used. Stochastic Gradient Decent uses the ∂C/∂W and the ∂C/∂b of the cost
function with respect to any weight W or bias b in the network, which are both
calculated by the backpropagation algorithm.

We also calculate the derivative of C with respect to θ, because the derivative
reveals the direction in which the biggest increase in the cost function will hap-
pen. Going in the opposite direction gives us the biggest decrease in the cost
function.

A notation which is going to be used in the following section is δl, which rep-
resents the error of layer l. For layer l with pre-activation yl, the error δl is
defined as

δl =
∂C

∂yl
(3.14)

By propagating δl back through the network, δl can be found for each layer using
the chain rule. Furthermore, by using δl in each layer, ∂C/∂W and ∂C/∂b can
be found throughout the network.

3.2.2 BP of Multinomial Logistic Regression Output Layer

As mentioned, the layer error δl must be extracted from the output layer and will
then be backpropagated through the hidden layers in order to update weights
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and biases. The error is extracted in the same way for both the fragmentation
and the patch approach. For this thesis, the cross-entropy cost function is used.
The cost function will take the form shown below.

f(x)c = p(y = c |x) (3.15)

l(f(x), t) = −
∑
c

1c=t log f(x)c = log f(x)t (3.16)

The partial derivative of the output layer, using softmax, can be found to be:

δLj = −(1(c=t) − f(x)c) (3.17)

The Gradient for the pre-activation of the output layer is thus:

δL = −(e(y)− f(x)) (3.18)

Where e(y) is the one-hot vector of the ground truth y and of the same size as
the number of classes. Each position in e(y) is zero, except in position y.

3.2.3 BP of Fully Connected and Dropout Layer

As described in section 3.1.6, the Fully Connected layer behaves in the same way
when used in the new fragmentation method as when used in the traditional
patch method.

The δl is the pre-activation error of layer l and is calculated as follows:

δl = (W l+1)T δl+1 � g′(yl) (3.19)

One way it can be understood is that at layer l+1, the error δl+1 is known. Ap-
plying the transposed weight matrix of layer l+ 1 can be viewed as propagating
the error back to layer l. Calculating the element wise multiplication between
the error and g′(yl) can be viewed as propagating the error back through the
activation function. This results in δl for the given weight input layer.

Using δl, the derivative of the cost function with respect to the weight can be
found using the following equation:

∂C

∂W l
= xlδl (3.20)
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Where x = a(l−1) as long as layer l − 1 is a fully connected layer, otherwise x
will be the output of the flattening layer.

The input from the bias is by definition set to 1. The cost function with respect
to the bias can therefore be expressed as:

∂C

∂bl
= δl (3.21)

The derivative of the activation function that is used in equation 3.19 can take
the shape of one of three activation function mentioned earlier can be seen below.

sigmoid g′(a) = g(a)(1− g(a)) (3.22)

tanh g′(a) = 1− g(a)2 (3.23)
ReLu g′(a) = 1a>0 (3.24)

3.2.4 BP of Indexing and Flattening Layer

During forward propagating of the Flattening layer, the output from the last
pooling layer is mapped to an array. When back propagating, this is done in
reverse, mapping each element in δ(l+1) back to the position in the respective
feature map.

The same is true for the fragment approach. One thing to consider is that
each pixel is processed individually by the fully connected layers. Therefore, all
pixels must have been processed prior to mapping. Each δ(l+1)

j from layer l+ 1
is mapped back to its respective position according to it’s index.

3.2.5 BP of MaxPooling and MaxPoolingFragmented Lay-
ers

The pooling layer does not employ an activation function and therefore uses
the error δ(l+1) directly. Furthermore, there are no weights to be updated in
the pooling layer. When backpropagating through the pooling layer, we assume
that layer l−1 is a convolution layer and therefore must move the error through
the activation function.

For every feature map j and every row and column j, k in δ(l−1), upsampling,
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as opposed to subsampling, is performed as follows:

δ
(l−1)
ijk = 0 except for δ(l−1)i,j+p′,k+q′ = δ

(l)
ijk � g

′(y
(l−1)
ijk ) (3.25)

Where p′, q′ is the index of the max value in the pooling window. Thus only the
positions from where the max pooling values originated are non zero.

In cases where the sub-sampling windows overlap, a given δ
(l−1)
i,j+p′,k+q′ can ac-

count for more positions in δ(l). In these cases the δ(l−1)ijk will be accumulated.

For mean pooling the values are upsampled and divided by the pooling window
size as follows:

δ(l−1) =
1

p× q
upsample(δ(l)) (3.26)

Where upsample inverts subsampling.

BP of MaxPooling Fragmented layer

In the fragment method, the pooling layer is the layer where the input fragments
are themselves split into smaller fragments. When back propagating, these new
fragments in δl are consolidated again. For each fragment j created from an
input fragment i in the forward propagation pass:

δ
(l−1)
i =

∑
i

maxpool′(δ
(l)
j ) (3.27)

Where maxpool′()̇ is the equation 3.25.

This process is illustrated in Fig. 3.12 where δ(l−1) contains 1 fragment and
offsets (1, 1) and (0, 0) share the same max-value, thus accumulating the error
values.

3.2.6 BP of Convolution Layer

When back propagating through the convolution layer, we look at each feature
map i in layer l − 1. The error for feature map i is given by:

δ
(l−1)
i =

∑
j

(δ
(l)
j )∗(W (l)

ij ) (3.28)
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Figure 3.12: Max Pooling Backpropagation from right to left, from Masci et
al.[38]

Where ∗ is convolution, as in equation 3.1 with full padding and δ(l)j is the error
of the j’th feature map in layer l.

The gradients for the the kernel weightsW l
ij are computed using the backpropa-

gation algorithm. When convoluting the same weights,W l
ij is used for the kernel

across the whole feature map x(l)i . Thus the derivative of C with respect to W l
ij

can be expressed as the the sum of all errors in δ(l)j multiplied element-wise with
the respective kernel position in x(l)i . This can be written more concisely using
the definition of convolution.

∂C

∂W l
ij

= (δ
(l)
j ) ∗ x̃(l)i (3.29)

Where x̃(l)i is the input x(l)i with its rows and columns flipped and ∗ denote the
convolution operation. When performing backpropagation on the convolution
layer in a MPFCNN, the gradient is found for each feature map in each fragment.
In the convolution layer the number of fragments do not change. The error δ(l−1)j

for a fragment fi in Fx is found in the same way as described in equation 3.28.
This is due to the fact that the data structure of fi is the same as a typical
DCNN.

δl−1f,i =
∑
j

(δlf,j)∗(Wij) (3.30)

Where ∗ is convolution with full padding.

Each fragment uses the same set of weightsW . The derivative of C with respect
to W can thus be accumulated from each fragment f in layer l.

∂C

∂W l
ij

=
∑
f

((δ
(l)
f,j) ∗ x̃f,i) (3.31)



30 Convolutional Deep Learning Architecture

3.2.7 Weight update during BackPropagation

Updating the weights in the hidden layers can be done once the ∂C
∂Wt

is found.
Finding the derivative of the cost with respect to θ shows the direction giving
the biggest increase in the cost function. When updating the weight to minimize
the cost function we want to step in the opposite direction.

∆ = −ε ∂C
∂Wt

(3.32)

Wt+1 = Wt + ∆ (3.33)

Where t is the iteration index, ε is the learning rate, and for batches, ∂C
∂Wt

is the
average derivative with respect to Wt of the tth batch.

As described by [24], when moving down the error surface using gradient de-
cent, the weights can get stuck in a local minima. One solution for this, is using
momentum which acts as a low pass kernel that allows the network to ignore
small features in the error surface. Without momentum there is a bigger chance
that the network could get stuck in shallow local minima, but because the net-
work not only relies on the given trajectory, but takes the previous trajectories
into account, such minima can be avoided. When updating using momentum,
the the following rules are used, where t is the iteration index and m is the
momentum constant:

∆t = m∆t−1 − ε
∂C

∂Wt
(3.34)

Wt+1 = Wt + ∆t (3.35)

Using weight decay can also be beneficial for training the network, regularizing
the weights by penalizing large weights. The weight update for momentum and
weight decay becomes:

∆t = m∆t−1 − ε
∂C

∂Wt
− λεWt (3.36)

Wt+1 = Wt + ∆t (3.37)

Where λ is the regularization parameter. The biases are effectively updated in
the same manner as the weights. Because the fragmentation approach is based
on representing each patch within the whole image, it can be view as processing
all the patches in one big batch. When updating the weights for the convolution
layers, ∂C

∂Wt
must be divided with the number of pixels in the image, effectively

taking the the mean of ∂C
∂Wt

for the batch. In the fully connected layer each
pixel is processed individually, standard rules are applied when updating W for
a single training example or for batches.



Chapter 4

Implementation

In order to confirm the hypothesis made in Chapter 2, a MPCNN using the
Fragmentation approach, or a MPFCNN, will be implemented as a fully param-
eterizable CNN within a DNN Python library for use on CPUs and GPUs, at
such a quality that it can be distributed through github.

The new library, capabilities will be based on python and will hook to CUDA
code. The library will be developed with speed, modularity and extensibility in
mind. In this chapter we will begin to understand the CUDArray and DeepPy
frameworks and we will review implementation of specific components of said
frameworks.

4.1 What are CUDArray and Deeppy

CUDArray(CA) and DeepPy(DP) together comprise a Pythonic NN library,
which was established by Anders Boesen Lindbo Larsen, and has been devel-
oped through collaboration between Anders and myself. CA and DP make ac-
cessible to our academic colleagues the state of the art fragmentation approach
for MPCNN. CA and DP are both open source projects under the MIT license.
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During this thesis period, my contribution to the CUDArray library has con-
sisted of developing and implementing the following library components:

• CPU implemented patch based approach for the Convolution layer

• CPU implemented patch based approach for the Pooling layer

• CPU, Multi-threaded CPU implemented fragment based approach for the
Indexing and Flattening layer.

• CPU, Multi-threaded CPU and GPU implemented fragment based ap-
proach for the Convolution layer

• CPU, Multi-threaded CPU and GPU implemented fragment based ap-
proach for the MaxPoolingFragment

Also during this thesis period, my contribution to the Deeppy module of the
CA library has consisted of developing and implementing the following library
components:

• a patch based approach for the Convolution layer

• a patch based approach for the Pooling layer

• a patch based approach for the Dropout layer

• a fragment based approach for the Convolution layer

• a fragment based approach for the MaxPoolingFragment

• a fragment based approach for the Indexing and Flattening layer.

• updates and modifications of the network layer connections

4.1.1 CUDArray Library: a subset of the NumPy Library

As is described on the github repository, CA is a CUDA-accelerated subset
of the NumPy library, and acts as the backend of the library where many of
the calculations are performed. The goal of CA is to combine the ease of de-
velopment from NumPy with the computational power of Nvidia GPUs in a
lightweight and extensible framework. CA supports different data types, offers
CPU fallback and, as described by Anders [34],
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’CUDAaray aims to be a drop-in replacement for NumPy for all NN
needs. This means that CUDAaray does not offer all the functional-
ity of NumPy, instead it offers only the essentials needed for NN’s.
CUDArray also offers more specific functionality for NN, DNN and
DCNN such as image convolution, softmax and one hot encoding.’

4.1.2 Deeppy Module for State of the Art Neural Nets

Again as is described on the github repository, DeepPy is a module of CUDArray
which tries to combine state-of-the-art deep learning models with a Pythonic
interface in an extensible framework [2], and acts as the frontend of the library.
DP binds the math together to form the neural network capabilities, using
CUDArray to perform calculations.

4.1.3 Motivation for CUDArray and Deeppy

Considering that the MPFCNN method has been shown to achieve state of the
art performance and results for a variety of applications throughout 2014, it
is important that academics have access to the new MPFCNN method within
easily accessible libraries as soon as possible.

Existing NN Libraries

Fortunately though, as mentioned in Chapter 1 ’Introduction’, there are a num-
ber of high-performing, open source NN libraries available to academics which
incorporate many of the state of the art methods.

Unfortunately again however, there are very few which strike a balance between
speed and usability. The following is a brief review of major available NN
libraries, with and without Python.

• Caffe: This is the closest non-Python library to what was envisioned for
CUDArray and DeepPy. The only caveat is that it has a C++ backend,
while using a Python interface. It was developed by the Berkeley Vision
and Learning Center.[30]

• CUDAMat combined with Gnumpy:[41] [51] These combine to form a
Python matrix class that uses CUDA for performing calculations on a
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GPU. It is also closely related to the approach taken by CUDArray. As
described by Anders [34], ’CUDAMat implements common matrix oper-
ations and exposes them through a Python module without adhering to
the NumPy interface. A notable limitation of CUDAMat is its focus on
2D arrays of data type float’.

• Theano: A GPU-based numerical Python library, Theano allows you to
define, optimize, and evaluate mathematical expressions involving multi-
dimensional arrays efficiently. It also includes a complex optimization
function, which re-compiles your code, making it quite difficult and time
consuming to debug while developing a new library modification. It trains
fast, but array expressions must be explicitly compiled before usage.[6]

• Torch7: Based on the LuaJIT language with an underlying C/CUDA
implementation, this library offers a Matlab-like environment for state-of-
the-art machine learning algorithms.[3]

• cuda-convnet2: A fast convolutional neural network in C++/CUDA. Very
fast, but not very user-friendly. It is generally hard to hack and to
modify.[1]

• nnForge: a C++ library for training convolutional and fully-connected
neural networks. The author does very well in Kaggle competitions.[40]

• PyLearn2: Most of PyLearn2’s functionality is built on top of Theano.It
is incredibly easy to get started with, but is like a black box when it comes
to debuging or modifying.[43]

Project Motivation

The motivation behind CUDArray was to facilitate neural network programming
with a simple, extensible, lightweight framework, allowing for quick and flexible
experimentation, without requiring a GPU. This would allow researchers to
develop and test new networks quickly on a laptop computer, before running
the network on a larger external server.

Some of the existing networks train fast, but testing a new idea requires a large
time investment in learning the framework or code to build the network, before
the training can even begin. Providing custom CUDA kernels for CA and DP
is made relatively easy thanks to the lightweight framework, and the simplicity
and modularity of CA makes it easy to extend with custom functionality, since
little knowledge about the framework is needed. One needs only to understand
Python and Numpy in order to begin using CA and DP.
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After my own experiences with NN libraries, I was eager to contribute to the CA
and DP frames works for three major reasons. First, CA and DP are written
almost entirely in Python, a language that is largely and increasingly popular
among academics [23].

Second, CA and DP would be very modular, loosely coupled and largely with-
out optimization through code recompiling, meaning debugging would be much
easier. Essentially, the code you write and submit largely will not be altered.

And Third, CA and DP are object oriented, allowing one to create a neural
network using layer objects, rather than a network configuration file. These
three aspects of CA and DP ensure that the frameworks would be highly flexible
and extensible, as well as easy to approach and efficient to work with.

4.2 Implementation of MPFCNN in CA and DP

In this section, we will review only the implementation of the fragmentation
approach to MPCNNs in CUDArray and DeepPy which vary from the imple-
mentations of [38] and [22]. My full contributions to CA and DP were reviewed
in the beginning of section 4.1 and can be found in the framework’s github
repository. Most of the discussion in this section centers around the MPF layer
and the Flattening layer.

4.2.1 MaxPoolingFragmented Layer Implementation and
Modifications

When implementing the MPF layer as described in section 3.1.4, the focus was
on implementing a MaxPooling operation where the stride and window size were
parameters which could be defined by the user.

In their paper, Giusti and Masci et al. fix the window and stride size to k × k.
They base the number of fragments created, on k. When this assumption is
ignored to allow for flexibility, the number of fragments created in the pooling
layer must then be based on the stride size.

|F |(l+1) = |F |(l) × strideh × stridev (4.1)

The number of offsets o is thus defined as:

|o| = strideh × stridev (4.2)
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To ensure that all patch information is retained, the height and width of the
pooled image, and thus the number of pooling operations performed on y for
each offset, is defined as follows:

|yh| = b
(xh − sth)

sth
c+ 1 (4.3)

|yv| = b
(xv − stv)

stv
c+ 1 (4.4)

for the vertical and horizontal size of y, given the size of x and the stride st.

When using an overlapping pooling operation, as described above, said operation
will result in the pooling window exceeding the boundaries of the image. To
handle this we state that the operation will always start in the top left corner
and padding is added to the right and bottom side of the image. The padding
added is of value −inf which ensures that the padding will not be chosen by
the max pooling. An example of this can be seen in Fig. 4.1.
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Figure 4.1: 4 × 4 Pooling window with a stride of (2, 2) exeeding the image
boundaries on its 3 stride in offset (0, 1)

4.2.2 Flattening Layer Implementation and Modifications

While it is assumed that Giusti and Masci et al. modify their Flattening layers,
their method of doing so was not explicitly stated. The following is a description
of how this layer was handled in CA and DP.
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Figure 4.2: Indexing of a 6×6 image through a pooling layer with stride (2, 2)

When using the traditional patch method to segment an image, the patch is
not required to be sub-sampled down to one pixel before it reaches the fully
connected layers. To reflect this in the fragment approach, a new flatting layer
was developed. When building the MPFCNN, the Flattening layer is given a
window size:

dp.Flatten_seg(win_shape =(3 ,3))

When flattening a pixel pfij , the window is place over the image with pfij as the
middle pixel. All pixels under the window are flattened to a 1d array, keeping
pfij in the middle of the array. In the edge cases where the window exceeds the
image boundaries mirror padding will be used. When back propagating through
the flattening layer, the error value for δ(l−1)fkij will be an accumulation of all the
errors in δ(l) where the given pixel is inside the bounds of the flattening window.

Indexing Implementation

Indexing is implemented by tracing the fragmentation of a 0...n arranged matrix
through the pooling layers. An example of the Indexing process through a
single pooling layer with stride (2, 2) can be seen in Fig. 4.2. The indexing is
used to sort the pixels, starting from the top left corner, continuing in a row-
wise manner. This is done during flattening, such that the output of the fully
connected layer is already sorted. The indexing calculation gives insignificant
overhead, due to the fact that it only requires one forward pass through the
pooling layers in the network. The indexing of the network remains constant
and the indexing is the same for all feature maps.





Chapter 5

Tesing and Results

In this sections different test parameters will be discussed. The test machines
and hardware used can be seen in Appendix A.1. The data used in this section
consists of the images from the ISBI challenge.

5.1 Speedup

In practice, speed of a network can vary between different implementations.
To get a fair assessment, the new method has been tested against multiple
implementations. The network used for testing the speed of the Fragmented
approach, is the network described in Table 5.1.

During testing, a 512×512 image was forward propagated through the network.
No training, pre-processing or post processing time was recorded. This means
that the time necessary for creating the patches when using the patch based
approach is not included in the testing time.
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Layer (l) Type Maps Window size
1 convolution 48 maps 4× 4
2 max pool 48 maps 2× 2
3 convolution 48 maps 5× 5
4 max pool 48 maps 2× 2
5 convolution 48 maps 4× 4
6 max pool 48 maps 2× 2
7 flatten 100 neurons 1× 1
8 fully connected 100 neurons 1× 1
9 fully connected 2 neurons 1× 1

Table 5.1: Neural network architecture used for testing the speed of different
approaches

The testing time results can be seen in Table 5.2. From the table we can see
that the new fragmentation approach greatly increased the speed of the network.
Even the CPU implementation, running on a single thread, outperforms the
patch approach on a GPU.

Method Time per image [s] Relative to GPU-patch
CPU Patch 2126.78 -
Theano GPU Patch 67.48 1.00
Deeppy CPU Fragmentation 1 core 47.62 1.41
Deeppy CPU Fragmentation 20 cores 4.12 15.89
Deeppy GPU Fragmentation 0.55 123.6

Table 5.2: Time for different implementations to segment an test example of
size 512× 512

The actual speedup of 123.6 exceeds the calculated theoretical speedup of 68.4
from Table 2.1 in Chapter 2. This is mainly due to the fact that, in the patch
based method, all patches could not be processed in a single batch, most likely
due to memory restriction on the GPU, though this assumption requires further
investigation.

While performing the speed tests, the batch for the patch based method using
Theano on a GPU was restricted to 642, whereas, a full image could be processed
on the GPU using the fragment method, without restriction. From Table 5.3, it
can be seen that the speedup increases as the image size increases, again likely
due to the memory limitation on the GPU.
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image size speedup
64 10.3

128 35.0
256 82.8
384 113.3
512 123.6

Table 5.3: Speedup of segmentation from the patch method on GPU to the
fragmentation method on GPU, for the given image size, from

From Fig. 5.1, we can see the time it takes to forward propagate images of dif-
ferent sizes accross differing methods. For small images using the Fragmented
approach, the multi-threaded CPU implementation is on par with the GPU im-
plementation. Thus, the GPU is truely utilized when processing larger images.

Figure 5.1: The time in sec on a log scale for the net described in tabel 5.1 to
segment a square image of the given size

5.2 Layer Performance

One of the changes made to the fragmented approach network in CA and DP,
was enabling window size flexibility in the Flattening layer. In order to test this,
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four networks with the architecture described in Table 5.1, with fully connected
layers of 200 nodes were trained.

Two of the networks used a flattening layer of 1 × 1 and two used a flattening
layer of 3× 3. The results can be seen in Fig. 5.2, where the test error for each
epoch is shown. The error rate used is the mean absolute error of classifying
each pixel in the images.

Figure 5.2: Test error for 4 networks using the architecture in Table 5.1 with
a 200 fully connected layer and a 1 × 1 or 3 × 3 flattening layer.
Using 100 training and 20 testing images

From figure 5.2, it can be seen that using the larger window size decreased the
error by 6.2%. Which show that the window size of the flattening layer does
have an effect on the error rate.

5.3 ISBI 2012 Electron Microscopy Segmentation
Challenge

In order to test the the performance of the implemented fragmentation method,
a network based on the architecture in [10] was used on the ISBI 2102 Electron
Microscopy Segmentation challenge, where the main focus was on the pixel error,
defined as 1 - the maximal F-score of pixel similarity.
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In Fig. 5.3 an example of the input image can be seen as the left most image.
Second from the left shows an output from one of the hidden layers. After this
the output image can be seen and then the binary output. The right most and
last image show the true labeled binary.

Figure 5.3: From the left: Input image, Hidden layer, output image, one hot
output image, true segmentation

The network was trained using 225 training images and 15 validation images.
The 240 images were synthesized from the original 30 images by flipping and
rotating the images. After 35 epochs, the network reached convergence. Each
epoch took on average of 1244.5 seconds. The network processed on average
approximately 47,394 patches per second, in comparison to Masci et al.’s average
of 4500 patches per second [38].

After training, a test set was segmented and sent to the competition server for
evaluation. The result was a pixel error of 0.078, and furthermore, placed 13
out of 34 on the challenge leaders board[4]. This pixel error result was obtained
using only the MPFCNN and no post-processing of the images.

Figure 5.4: 3 feature maps from the same fragment at the lower level of the
network





Chapter 6

Conclusion

After a review of the theory and architecture of MPCNNs for image segmenta-
tion, a review of the implementation of a MPFCNN in the frameworks CUDAr-
ray and DeepPy, and a review of the testing and results of the framework and
network, we arrive at the conclusion.

The implementation of the fragmentation method in Cudarray and DeepPy
achieves segmentation performance on par with Masci et al.’s state of the art
implementation. Our pixel error rate of 0.078 with no post processing, compared
to their pixel error rate of 0.068 [38], confirms that the CA DP MPFCNN was
implemented correctly. These pixel error rates are in reference to the ISBI 2012
Electron Microscopy Segmentation Challenge.

In addition to the successful pixel error rate, CA and DP’s MPFCNN with
GPU implementation achieves state of the art performance in relation to speed,
offering our academic colleagues access to a image segmentation method which
is approximately 123.3 times faster than the existing patch based method within
existing NN libraries.

CA and DP as they have been implemented in this thesis are currently located
on github within their own branch. They will in the very near future, likely
immediately following this thesis, be merged into the master thread, once nam-
ing conflicts have been resolved. Also in the future, I intend to explore using
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dropout for the convolution layers, which has recently been shown to further
reduce the overall classification error rate [47], as well as explore additional
network layer functionality, like local response normalization.

The results detailed in Chapter 5 confirm our hypothesis that the best possi-
ble solution available today for implementing DCNNs for fast image segmen-
tation and pixel level classification tasks on CPUs and GPUs without signif-
icant loss of accuracy employs the use of Masci’s Fragmented approach on a
GPU-implemented Max-Pooling Convolutional Neural Network which includes
Supervised training through backpropagation using Stochastic Gradient Decent.
Said network can now be found on github under the MIT Open Source license
within the CUDArray and Deeppy frameworks.



Appendix A

First Appendix

A.1 Test Computers

CPU Test computer:

42 x IBM NeXtScale nx360 M4 nodes

Each node is configured with:

• 2x Intel Xeon Processor E5-2680 v2 (ten-core, 2.80GHz, 25MB L3 Cache)

• 128 GB memory

• Scientific Linux 6.4

• QDR Infiniband interconnect

• 500 GB internal SATA (7200 rpm) disk for OS and applications

In total:

• 840 Cores
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• 5,25 TB RAM

GPU Test computer:

4 x HP ProLiant SL390s G7 nodes – GPGPU

Each node is configured with:

• 2x Intel Xeon Processor X5550 (six-core, 2.66GHz, 12MB L3 Cache)

• 2x Tesla S2050 GPUs

• 48 GB memory

• Scientific Linux 6.4

• QDR Infiniband interconnect

• 500 GB internal SATA (7200 rpm) disk for OS and applications

In total:

• 48 Cores

• 192 GB RAM
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